

٥

ASX: IMU

IMUGENE

November, 2021

1

Disclaimer

- 1. The information in this presentation does not constitute personal investment advice. The presentation is not intended to be comprehensive or provide all information required by investors to make an informed decision on any investment in Imugene Limited (Company). In preparing this presentation, the Company did not take into account the investment objectives, financial situation and particular needs of any particular investor.
- Further advice should be obtained from a professional investment adviser before taking any action on any information dealt with in the presentation. Those acting upon any information without advice do so entirely at their own risk.
- 3. Whilst this presentation is based on information from sources which are considered reliable, no representation or warranty, express or implied, is made or given by or on behalf of the Company, any of its directors, or any other person about the accuracy, completeness or fairness of the information or opinions contained in this presentation. No responsibility or liability is accepted by any of them for that information or those opinions or for any errors, omissions, misstatements (negligent or otherwise) or for any communication written or otherwise, contained or referred to in this presentation.

- 4. Neither the Company nor any of its directors, officers, employees, advisers, associated persons or subsidiaries are liable for any direct, indirect or consequential loss or damage suffered by any person as a result of relying upon any statement in this presentation or any document supplied with this presentation, or by any future communications in connection with those documents and all of those losses and damages are expressly disclaimed.
- 5. Any opinions expressed reflect the Company's position at the date of this presentation and are subject to change
- 6. International offer restrictions This document does not constitute an offer to sell, or a solicitation of an offer to buy, securities in the United States or any other jurisdiction in which it would be unlawful. In particular, the New Shares have not been, and will not be, registered under the US Securities Act of 1933 and may not be offered or sold in the United States except in transactions exempt from, or not subject to, the registration requirements of the US Securities Act and applicable US state securities laws. The distribution of this presentation in jurisdictions outside Australia may be restricted by law and any such restrictions should be observed.

Introduction to Imugene

Imugene is a biotech company headquartered in Australia and publicly traded on the Australian Securities Exchange (ASX:IMU)

2013

Paul Hopper built Imugene around a technology that originated from the Medical University of Vienna <u>MEDICAL UNIVERSITY</u>

2015

Leslie Chong from Genentech joined Imugene

HER-Vaxx, our HER-2

2017

targeted B Cell Immunotherapy entered the clinic

2018

Licensed extensive B cell portfolio and platform from OSU and Mayo Clinic comprising of PD1, HER1, HER2, HER3, VEGF, IGF-1R, CD28

> MAYO CLINIC THE OHIO STATE UNIVERSITY

2019

Completed the acquisition of a prolific oncolytic virus from City of Hope invented by Dr Yuman Fong

CityofHope

SEP 2021

Entered the S&P/ASX 300 Index

NOV 2021

Strategic Partnership with Eureka

CO celularity

AUG 2021

Strategic Partnership

with Celularity

MAY 2021

Licensed onCARlytics

from City of Hope

invented by Dr Y Fong,

Dr S Priceman &

Dr A Park

CityofHope

- Three novel technology platforms: Oncolytic virotherapies, onCARlytics in cellular therapy and B-Cell activating immunotherapies
- B-Cell Technologies: HER-Vaxx Phase 2 in gastric cancer and PD1-Vaxx in NSCLC
- CF33 Oncolytic Virotherapies: 2 (CHECKvacc and Vaxinia) Phase 1 Clinical Trials
- OnCARlytics: Pre-clinical Toxicology Trials and strategic partnership with Celularity and Eureka
- Highly experienced team in oncolytic virus and cellular therapies
- Significant news flow with multiple near & medium term valuation inflections

Three Novel Technology Platforms

Imugene's Deep Pipeline

Technology	Program	CMC & Pre-Clinical	IND	Phase I	Phase II	Key Data / Results	Intellectual Property	
onCARIytics	CF33-CD19					 Compelling pre-clinical activity in multiple cancers when combining onCARlytics (CF33-CD19) with CD19 CAR T Combination of onCARlytics and CD19 CAR T cells promotes endogenous memory T cell responses Research agreement with Celularity's allogeneic CAR T (CyCART-19) 	Expiring 2038	
VAXINIA (CF33- hNIS)	MAST (Solid tumours)					 CF33 has shown strong anti tumour responses in preclinical studies Inhibition of tumour growth in nearly all NCI60 models in TNBC, Lung, Pancreatic etc. Signs of increased tumour growth inhibition with CF33 + anti PD-L1 	Expiring 2037	
CHECKvacc (CF33-hNIS- aPD-L1)	COH TNBC IST (Breast Cancer)					 Potentially solves the industry problem of additive toxicity of combined checkpoint inhibitors if safety of CF33 is maintained in combination FDA IND approval, Phase 1 IST Open 	Expiring 2037	
	HERIZON (First line Gastric Cancer)					 Two further company sponsored Phase 2 studies and one Investigator Sponsored Study with HER-Vaxx in early and late stage gastric cancer are in planning 		
HER-Vaxx (HER-2)	neoHERIZON (Neoadjuvant Gastr				 Phase 2 Interim data: 0.418 HR (80% 2-sided Cl: 0.186, 0.942); 14.2 months HER-Vaxx + chemo compared to 8.8 months chemo alone Strong phase 1b results with no safety or toxicity issues, all patients had increased antibody response, 11/14 evaluable patients with encouraging clinical responses 	Expiring 2036		
	NextHERIZON (Metastatic Gastric	Cancer)						
PD1-Vaxx (PD-1)	IMPRINTER (Lung Cancer)					 PD1-Vaxx has shown encouraging response in preclinical studies Strong inhibition of tumour growth in mouse models of colorectal cancer (outperformed industry standard mouse PD-1 mAb) Signs of increased tumour growth inhibition when co-administered with B-Vaxx FDA IND approval, First patient dosed December 2020 	Expiring 2037	

International Leadership Team with Extensive **Commercialisation Expertise in the Sector**

Imugene has a team with oncology drug development experience

Leslie Chong

SYDNEY, AU

Managing Director & CEO

- 23+ years of oncology experience across Phase I -III clinical development programs
- Ex Senior Clinical Program Lead at Genentech, one of the world's most successful biotech businesses which sold the best selling breast cancer drug Herceptin
- · Also worked at global majors GSK and Exelixis
- Non-Executive Director of Cure Brain Cancer Foundation (CBCF) & Chimeric Therapeutics

Executive Chairman

- · Founder and Chairman of Imugene
- Founder & Chairman of Chimeric Therapeutics
- Chairman of Arovella Pharmaceutical
- Former Chairman of Viralytics
- Founder & Director of Prescient
- Extensive international & ASX biotech capital markets experience particularly in immuno-oncology & vaccines
- · Creator of OneStart, the world's largest life science accelerator

biotechnology and venture

Dr Jens Eckstein

Non-Executive Director

Managing Partner of Apollo

• Former president of SR One

• 15+ years in VC experience

funding early to clinical stage

biopharmaceutical companies

chairman, board director and

Ltd., the VC arm of GSK

Extensive experience as

founder of several

capital companies.

CAMBRIDGE, USA

Ventures

Dr Lesley Russell PHILADELPHIA, USA

- 25+ years of senior international operational and leadership experience having worked at Amgen, Eli Lilly, Teva, and Cephalon
- Extensive knowledge and experience with new drug development
- · Non-Executive Director of Enanta Pharmaceuticals.

Dr Axel Hoos PHILADELPHIA, USA Non-Executive Director

- CEO of Scorpion Therapeutics
- Former Senior Vice President and Head of Oncology at GSK
- Former Medical Lead for Yervov, the first immunooncology treatment to improve first survival.
- Board of Director of TCR² Therapeutics in Boston
- Chairman of the Sabin Vaccine Institute
- Co-Chair of the Cancer Immunotherapy Consortium Think-Tank

Charles Walker

BRISBANE, AU

Non-Executive Director

- Experienced listed biotech CEO and CFO (ASX:ACL and ASX:IMU)
- Extensive financial markets experience having executed 50+ cross border transactions
- Clinical experience includes managing pipeline of drugs in all stages from discovery, through to Phase III to product launch
- · CEO, Founder and NED of RedEarth Energy Storage

Non-Executive Director

B-Cell Immunotherapies

B Cell Based Antibodies Have Distinct Advantages To Existing Treatments

B cell Vaccines offer a unique opportunity to intervene at multiple points in the immune system and create immune memory which enhances durability of response.

NATURAL B CELL DERIVED **ANTIBODIES**

Safety	Stimulates the immune system to produce Abs, which may be potentially safer	Synthetic Ab, with side effects (including ventricular dysfunction, CHF, anaphylaxis, immune mediation)
Efficacy	Polyclonal Ab response reduces risk of resistance and potentially increases efficacy	Monoclonal Ab – may develop anti-drug antibodies
Durability	Antibodies continuously produced with lasting immune response to potentially inhibit tumor recurrence	Half life necessitates recurrent dosing
Usability	Potentially low numbers of vaccinations required per year	Requires regular infusion
Cost	Low cost of production enables greater pricing flexibility facilitating combination	Expensive course of treatment >US\$100K per year

9

HER-Vaxx Phase 2 Recruitment Complete

Trial

- Phase 2
- Open label
- Asia
- Eastern Europe
- India

Patients

- HER-2+++
- HER-2++ FISH/CISH +ve
- Advance or metastatic
 Gastric Cancer
- Stage IIIb/IV
- 36 patients in two arms

Study

Randomised

HER-Vaxx in combination with standard of care chemotherapy **Or**

Standard of care chemo: Cisplatin and 5FU or capecitabine or oxaliplatin

Primary Endpoints

Overall survival

Secondary Endpoints

- Progression-free survival
- Safety and Tolerability
- Immune response

First patient dosed March 2019/Last patient enrolled Jan 2021

Days	-21	0	14	21	35	42	63	77	84	105	126 +42	140 +63	
IMU-131 administration		1	1		1			1				1	
Chemotherapy Cycle		1		2		3	4		5	6			

Max 6 cycles SOC chemo with progression assessment every 42 days

AACR 2021 Presentation Poster

Developing Cancer Immunotherapies

Abstract No. CT107

A PHASE 1 B/2 OPEN-LABEL STUDY WITH RANDOMIZATION IN PHASE 2 OF IMU-1 31 HER2/ NEU PEPTIDE VACCINE PLUS STANDARD OF CARE CHEMOTHERAPY IN PATIENTS WITH HER2/ NEU OVEREXPRESSING METASTATIC OR ADVANCED ADENOCARCINOMA OF THE STOMACH OR GASTROES OP HAGEAL JUNCTION

Interim Analysis Results

Marina Maglakelidze¹, Dinara Ryspayenva², Iurie Bulat³, Zoran Andric⁴, Ivan Nikolic⁵, Tanuj Chawla⁶, Rajnish Nagarkar⁷, Vaibhav Choudhary⁸, Giri Venkata⁹, Rajesh Kumar Singh¹⁰, Davorin Radosavljevic¹¹, Zoran Petrovic¹², Ursula Wiedermann¹³, Leslie Chong¹⁴, Rita Laeufle¹⁴ Nicholas Ede¹⁴, Bonnie Nixon¹⁴, Anthony Good¹⁴

¹ARENSIA Exploratory Medicine, Tbilitsi, Georgia, ²ARENSIA Exploratory Medicine, Kiev, Ukraine, ³ARENSIA Exploratory Medicine, Chisinau, Moldova, ⁴Republic of, Clinical Hospital Center Bezanijska Kosa, Belgrade, Serbia, ⁵Oncology Institute of Vojvodina, Sremska Kamenica, Serbia, ⁵Oncology Institute of Vojvodina, Sremska Kamenica, Serbia, ⁶Tata Medical Centre, Kolkata, India, ⁷HCG Manavata Cancer Centre, Nashik, India, ⁸HCG NCHRI Cancer Centre, Nagpur, India, ⁹Victoria Hospital, Bangalore, India, ¹⁰Regional Cancer Centre Indira Gandhi Institute of Medical Sciences, Patna, India, ¹¹Institute of Oncology and Radiology of Serbia, Belgrad, I²Serbia, Military Medical University, Vienna, Austria, ¹⁴Imugene, Sydney, Australia,

INTRODUCTION

HER-Vaxx (IMU-131) is a B-cell activating immunotherapy consisting of three fused B-cell epitopes (p467) from the HER2/neu extracellular domain coupled to CRM197 and administered with the adjuvant Montanide.

The Phase 2 part of the study hypothesizes that active immunization with HER-Vax (IMU-131) will replicate or improve efficacy and safety of the approved monoclonal antibodies that target HER2 in patients with confirmed Her2+ advanced or metastatic Gastric Cancer. In the Phase 1b dose finding part of the study tumor response of patients who received 50ug dose strongly correlated with antibody levels with 50ug selected as the Phase 2 dose (Wedermann et. al., Annals of Oncology (2019)).

BACKGROUND

Figure 1: IMU.ACS.001 Study Design

In part 2 of study IMU.ACS.001, patients are randomized into two arms of either HER-Vaxx plus standard chemotherapy or standard chemotherapy alone.

The study is conducted in countries with limited access to trastuzumab in Asia and Eastern Europe.

The primary endpoint is overall survival, with progression-free survival and safety as secondary endpoints. Immune related endpoints include values and changes from randomization in humoral and cellular immunogenicity data.

METHODS

IMU-131 plus chemotherapy treated patients received 50ug dose of IMU-131 at Baseline/Day 0, Day 14, Day 35, Day 77 and then every 63 days until disease progression.

IMU-131 plus chemotherapy treated patients received 50ug dose of IMU-131 at Baseline/Day 0, Day 14, Day 35, Day 77 and then every 63 days until disease progression.

Figure 2: IMU.ACS.001 Phase 2 Treatment Schedule

RESULTS

Here we report the safety and efficacy results from the 1st interim analysis (OS and PFS) in a total of 27 patients after 15 progression events.

Within the IIT patient population, 8 of 27 patients have died on the control arm and 4 are deceased on the HER-Vaxx plus SOC chemotherapy arm. This translated into an overall survival HR of 0.418 (2 sided 80% CI: 0.186, 0.942) and a 1-sided p-value of 0.083. Progression free survival data of 27 patients was available, 9 patients progressed on the control arm and 6 patients on the HER-Vaxx plus SOC chemotherapy arm with a HR of 0.532 (2 sided 80% CI 0.267, 1.060) and a 1-sided p-value of 0.086.

Endpoint	Overall S Intent t (Prim	Survival o Treat vary)	Progression Free Survival Intent to Treat (Secondary)		
Treatment	HERvaxx + Chemotherapy	Chemotherapy Only	HERvaxx + Chemotherapy	Chemotherapy Only	
All Patients n=27	14	13	14	13	
Events	4	8	6	9	
HR	0.4	18	0.5	32	
2-sided 80%Cl	(0.186	0.942)	(0.267,1.060)		
Log-rank Test (1-sided p-value) *	0.08	83'	0.086+		

*Statistically Significant

Table 1: IMU.ACS.001 Phase 2 Overall Survival & Progression Free Survival

Figure 3 : IMU.ACS.001 KM-Curve Overall Survival Primar Endpoint

Figure 4: IMU.ACS.001 KM-Curve Progression Free Survival Secondary Endpoint

There was no difference in safety between the two treatment arms, suggesting HER-Vax does not add toxicity to SOC chemotherapy (Table 2).Incidence of Grade 3 and higher non-hematological (Table 3) and hematological adverse events (Table 4) were low and balanced between the treatment arms. Two patients on each treatment arm had an a symptomatic LMEF drop, none of them below LMEF of 50.

HERvaxx + C	hemotherapy 14	Chemotherapy Only n=13		
n	%	n	%	
13	92.9%	12	92.3%	
2	14.3%	3	23.1%	
5	35.7%	2	15.4%	
6	42.9%	4	30.8%	
0		2	15.4%	
0		1	7.7%	
	HERvaxx + C n* 13 2 5 6 0 0 0	HERvax.+ Chemotherapy n=14 n % 13 92.9% 2 14.3% 5 35.7% 6 42.9% 0	HERvaxx + Chemotherapy n=14 Chemotherapy n n 1 92.9% 12 2 14.3% 3 5 35.7% 2 6 42.9% 4 0 2 1 0 1 1	

Table 2: IMU.ACS.001: Safety Overview of Treatment Emergent Adverse Events (TEAE)

human Frank & Grada G	HERvaxx + Chemotherapy	Chemotherapy Onl		
verse Event 2 Grade 3	n (grade)	n (grade)		
astrointestinal toxicity	0	1(3)		
tigue	2	0		
amma-GT increased	2 (3+3)	0		
ute respiratory failure	1(3)	1(5)		
achexia	0	1(3)		
Imar-plantar erythrodysaesthesia syndrome	0	1(3)		
eumonia	0	1(4)		
ute hepatic failure	0	1(4)		
nbolism	1(3)	0		
DS (uncoded)	0	1(3)		
tal n	6	7		

Table 3: IMU.ACS.001 Grade 3 and Higher Non-Hematological AE

	-	-	
Adverse Event	HERvaxx + Chemotherapy	Chemotherapy Only n	
Anemia:			
Grade 1+2	1	1	
Grade 3	1	4	
Febrile neutropenia:			
Grade 1	1	0	
Neutrophil count decreased:			
Grade 2	1	0	T-1.1. 4.
Grade 3	1	0	IMUACS 001
Platelet count decreased:			Grade 3 and
Grade 3	1	0	Higher
Grade 4	0	1	Hematologica
lotal n	6	6	AE

Figure 5: IMU.ACS.001 PHASE 2 - HER2 Specific Antibodies

By week 6 HER2-AB were developed by the patient's immune system as response to HER-Vaxx vaccinations and remained high during treatment with every 63 days maintenance vaccinations only. One patient on the chemo control arm progressed at week 24 and received trastuzumab containing treatment. The patient returned for one AB assessment that showed a similar level as HER-Vaxx (Figure 5). Further data on response and biomarker is awaited.

CONCLUSIONS

These data demonstrate HER-Vaxx may provide treatment benefits consistent with traditional monoclonal antibodies with a corresponding adaptive immune response without toxicity. Astudy (neoHERIZON) in perioperative HER2+GC with HER-Vaxx in combination with FLOT+/- anti-PD-L1 is in planning.

REFERENCES

Wiedermann et al: 2019, Annals of Oncology Volume 30 P495.496: Results of P1b study with a HER2/neu B-cell vaccine administered with chemotherapy in patients with HER2/neu overexpressing advanced gastric cancer

3 and DISCLOSURES

Study is sponsored by Imugene Limited B-cell peptide vaccine (IMU-131) was developed at the Medical University of Vienna

PD1-Vaxx

PD1-Vaxx Phase 1: Study Design

Phase	Part 1: Monotherapy Dose Escalation	Part 2: Combination Escalation & Expansion (Planned)				
Indication	Non-small cell lung cancer expressing PD-L1					
Objectives	Safety & Tolerability, Immunogenicity, OBD Monotherapy					
No. of Patients	Approx. 12-22 Approx. 12-30					
Site Location	Australia & USA					

PD1-Vaxx Phase 1: Recruiting

Current Status

ESMO 2021 Presentation Poster

est est congress

IMPRINTER: An Open Label, Multi-Center, Dose Escalation/Expansion, Phase 1 Study of IMU-201 (PD1-Vaxx), a B-Cell Immunotherapy, in Adults with Non-Small Cell Lung Cancer

Poster ID: 1367 TiP

BY THE IMMUNE SYSTEM

The PD-L1 protein binds to the PD-1 receptor and

stops the T-Cell from recognising the cancer allowing the cancer cell to survive and spre

Figure 1, MOA of PD1-Vaxx

Study Description

John Jae Won Park¹, Gary Richardson², Martin Gutierrez³, David Carbone⁴, Michael Boyer⁵, Panayiotis Savvides⁵, Pravin Kaumaya⁷, Tanios Bekaii-Saab⁶, Tri Giang Phan⁸, Leslie Chong⁹, Rita Laeufle⁹, Nicholas Ede⁹, Bonnie NIxon⁹, Anthony J. Good⁹

Macauarie University Hospital, Sydney, Australia; ²Cabrini Hospital Malvern, Melbourne, Australia; ³Hackensack University Medical Center, New Jersey, NY; ⁴The James Comprehensive Cancer Center, Columbus, OH; ⁵Chris O'Brien Lifehouse Hospital, Sydney, Australia; ⁶Mayo Clinic, Phoenix/Scottsdale, AZ; ⁷Ohio State University, Columbus, OH; ⁸St Vincent's Clinical School, UNSW, Sydney, Australia; ⁹Imugene, Sydney, Australia,

Primary Objectives

- To evaluate safety/tolerability and immunogenicity of IMU-201 as monotherapy following treatment with PD-1 inhibitor or PD-L1 inhibitor therapy in patients with advanced NSCLC tumors that are positive for PD-L1.
- To identify the Optimal Biological Dose (OBD) of IMU-201 as monotherapy (mOBD). in patients with advanced NSCLC tumors that are positive for PD-L1.

Secondary Objectives

• To evaluate the efficacy of IMU-201 as monotherapy following treatment with SOC including monoclonal PD-1 inhibitor or PD-L1 inhibitor therapy in patients with advanced NSCLC tumors that are positive for PD-L1.

Exploratory Objectives

To evaluate changes in immunological, biomarker and additional radiological markers of tumor progression in patients treated with IMU-201 as monotherapy.

Primary Endpoints:

- · Frequency of patients experiencing adverse events (AEs) graded by Common Terminology Criteria for Adverse Events (CTCAE) v5.0.
- · Frequency of patients discontinuing study treatment due to AEs.
- The OBD of IMU-201 evaluated by safety/tolerability and immunogenicity data (IMU-201 and PD-1 specific antibody (IgG) titers).

other immunotherapy agents. Patients may have either progressed on their previous therapy or lack of response to their SOC and are at high risk of progression

Other tumor indication eligible for the treatment with immunotherapy are currently under evaluation.

REFERENCES

• Honey, K. (2017). "FDA Approves Fourth Immune Checkpoint Inhibitor for Bladder Cancer." Cancer Research Catalyst. The Offical Blof of the American Association for Cancer Research.

 Sharma, P., S. Hu-Lieskovan, J. A. Wargo and A. Ribas (2017). "Primary. Adaptive, and Acquired Resistance to Cancer Immunotherapy." Cell 168(4): 707-723

Pravin T. P. Kaumaya, Linlin Guo, Jay Overholser, Manuel L. Penichet & Tanios

Bekali-Saab (2020) Immunogenicity and antitumor efficacy of a novel human PD-1 B-cell vaccine (PD1-Vaxx) and combination immunotherapy with dual trastuzumab/pertuzumab-like HER-2 B-cell epitope vaccines (B-Vaxx) in a syngeneic mouse

model, Oncolmmunology, 9:1, DOI: 10.1080/2162402X.2020.1818437

Sponsor and Contact

Imugene Ltd, Australia, Contact via: info@imugene.com

IMU-201 as monotherapy treatment for PD-L1 expressing lung cancer, to evaluate safety, tolerability, and immunogenicity and assess the optimum biological dose

(OBD) of IMU-201 to be used for further clinical development. All patients enrolled in the study must have previously received an immune checkpoint inhibitor for their underlying cancer and experienced disease progression.

The IMPRINTER study is an open-label dose escalation/dose expansion study of

Gives T-cells the ability to

recognise the cancer cell and mount an immune response

PD1-VAXX IMMUNOTHERAPY

AVOIDING T-CELL RECOGNITION AND KILLING

produce polyclona

antibodies (pAb)

ANTI PD-1

antibody RESPONSE

The study will continue into combination therapy that includes combination with SOC which may include a monoclonal AB (such as anti-PD-L1)

D -21			D 15	D 22	D 29	D 35	D 43	D 64	Еот	SFU		
Scre	en											
Kev:	ISA Vac	ISA	ISA Vac	ISA	ISA Vac	ISA	ISA RA (every 42 days)	ISA Vac (every 63 days)				
Vac = RA = SFU =	Vac = IMU-201 administration RA = Radiographic Assessment SFU = Survival Follow-Up							ISA = Injection Site Assessment EoT = End of Treatment Visit				

Figure 4, Vaccination schedule

Participating Countries and Sites

Figure 3 Map participating countries and sites

info@imugene.com

Treatment Regimen

15

Oncolytic Virus CF33

CF33 Mechanism of Action

- Direct infection, replication within and cancer cell killing
- Viral infection increases local check point targets (PD-1, PD-L1, CTLA4 etc)
- Cell death is immunogenic [surface expression of calreticulin, release of adenosine triphosphate (ATP) and release of high mobility group box 1 (HMGB1)]
- Local anti-PD-L1 expression may allow enhancement of anti-cancer immunotherapy
- Human sodium iodine symporter (hNIS) expression allows additional use of ¹³¹Iodine or ¹⁸⁸Rhenium killing of infected cells and adjacent cells

CHECKvacc Phase 1 TNBC Study CF33+hNIS+aPD-L1 ("Armed" Virus)

First Patient Enrolled in October 2021

Disease of need	Potential target for immunotherapy	Treatment responses to Atezolizumab (JAMA	Potential for registration in well-designed, randomised P2 study	Indication	TNBC
 8-13 month survival for metastatic disease with few treatments 	Expresses PD1,	Oncology, 5:74, 2019)		FDA IND	CHECKvacc: CF33-hNIS-aPDL1
	PD-L1	 1st line: 24%; 2nd line: 6% 		N	Part 1=18-24 ; Part 2=12
		 Approved by FDA 8 March 2019 		Location	Single Center: COH
				Admin Route	Intratumoral (IT)

VAXINIA Phase 1 MAST Study (Metastatic Advanced Solid Tumours)

Dose Admin

IT

IT Administration Head & Neck. Advanced Melanoma, TNBC

IV Administration Head & Neck, Advanced Melanoma. TNBC, NSCLC, Bladder, Gastric, Colorectal, RCC

Part 1: VAXINIA Monotherapy

Identify

based on:

Safety

Part 2: VAXINIA + SOC 10* **Combination Dose Escalation**

Identify **Combination**

DLT[#] cleared VAXINIA monotherapy dose combined with IO* in dose escalation cohorts. Select IO^{*} Combination for recommended phase 2 dose (RP2D) based on:

- Safety
- Immunogenicity
- Tumour Response

No. of Patients: Approx. 60-120 Site Location: USA

*IO: Immunotherapy *[#]DLT:* Dose Limiting Toxicity

The CAR T Solid Tumour Challenge & Imugene's Solution

Chimeric Antigen Receptor (CAR) T cell therapy has had limited activity in solid tumours, largely due to a lack of selectively and highly expressed surface antigens, such as the blood B cell antigen CD19.

CD19 Targeting domain

OV generated CD19

Solid Tumour

NEW CONCEPT

Utilise OV's as a delivery vector to deliver CD19 antigen to solid tumour cells

Engineer Imugene's CF33 to infect solid tumour cells and insert CD19 transgene to enable presentation of CD19 over the tumour cells during tumour cell infection, onCARlytics (CF33-CD19)

Combination use of autologous or allogeneic CD19 CAR Ts with onCARlytics (CF33-CD19) presents CD19 targets on solid tumours

20

Introducing onCARlytics

"OnCARlytics makes the treatment of solid tumours by CAR T drugs viable" Dr Saul Priceman

OnCARlytics is a novel and effective combination immunotherapy utilizing its exclusively licensed CF33 oncolytic virus to deliver and present cell surface CD19 antigen (CF33-CD19) promoting CD19 CAR T cell anti-tumour responses against solid tumours Watch: Combination CAR T Oncolytic Virus Immunotherapy Kills Tumours

Dr's Saul Priceman and Anthony Park from the City of Hope Cancer Centre

Mechanism of Action: How does it work?

CAR T cell infusion

onCARlytics makes solid tumours "seen" by CD19 directed CAR T

- 1. OnCARlytics infects tumour cells
- 2. Virus replication and production of CF33-CD19 on the cell surface enabling CD19 CAR T cell targeting
- 3. Tumour cell lysis leads to viral particle release and the combination promotes endogenous immune cell recruitment to tumours
- 4. Released viral particles re-initiate virus infection of surrounding tumour cells.

onCARlytics delivers CAR Targets to "targetless" solid tumours

onCARlytics (CF33-CD19) infects a wide array of solid tumour cell lines, with dose-dependent CD19 cell surface expression

- Capan-1 (pancreas)
- DU145 (prostate)
- ► OV90 (ovarian)
- Panc-1 (pancreas)
- UM-SCC-1 (head and neck)
- UM-SCC-47 (head and neck)
- 🗕 U251T (glioma)

Combination of onCARlytics (CF33-CD19) and CD19-CAR T cells promotes tumour regression in xenograft model of TNBC

Four FDA Approved CD19 CAR T's

Approved and in-development autologous or allogeneic CD19 CAR Ts can be partnered with Imugene's onCARlylics for treating solid tumours:

U NOVARTIS

GILEAD

Breyanzi (lisocabtagene maraleucel) Suspension FOR IV INFUSION

Milestones

Technology

 (\checkmark)

Milestone

Developing Cancer Immunotherapies	

Next 12-24 months

	onCARIytics	1 st Patient Dosed
	onCARIytics	FDA IND Clearance
	PD1-Vaxx	Combination RP2D
	onCARIytics	GLP Toxicology Study
	VAXINIA	1st Patient Dosed
	onCARIytics	FDA Pre-IND Meeting
	onCARIytics	GMP manufacturing for pre-clinical toxicology & Phase 1 study
	VAXINIA	FDA IND Clearance
	HER-Vaxx	Neo and Next HERIZON studies
	PD1-Vaxx	Maximum Feasible Dose Identified
	HER-Vaxx	OS Primary Endpoint
\oslash	onCARlytics	Strategic Partnership with Eureka on autologous CD19 CART
\oslash	CHECKvacc	TNBC IST 1st Patient Dosed
\oslash	HER-Vaxx	PFS analysis data
\bigcirc	onCARlytics	Strategic partnership with Celularity on allogenic CD19 CART COCcelularity
\bigcirc	CHECKvacc	FDA IND Clearance

Financial Summary

Public Market Overview

Share Price Performance (last 3 months)

Share Price ¹	A\$0.585	
52 week range	0.060 - 0.60	
Market Capitalisation	A\$3.302B	+ Comparison
Cash equivalents (30 Sept 21)	A\$112.2M	11 ~
Enterprise Value	A\$3.189B	□-□ d
Top 5 Shareholders (as at September 2021)		л ^д
Paul Hopper	6.96%	9/8 16/
HSBC Custody Nominees (Australia)	5.98%	Volume Add
Richard Mann and Assoc.	5.35%	0
JP Morgan Nominees Australia Pty Limited	4.57%	
Citicorp Nominees Pty Limited	3.67%	

Note:

1. Market capitalisation calculations based on ordinary shares (5.46 bn) only and excludes the dilutive impact of options outstanding (0.64 bn)

٥

ASX: IMU

IMUGENE LIMITED

www.imugene.com

info@imugene.com

1